# Why are Non-terminating, Repeating Decimals Rational

Rational numbers is closed under addition. That is, if we add two rational numbers, we are guaranteed that the sum is also a rational number. The proof of this is quite easy, so I leave it as an exercise for advanced high school students.

Before discussing non-terminating decimals, let me also note that terminating decimals are rational. I think this is quite obvious because terminating decimals can be converted to fractions (and fractions are rational). For example, $0.842$ can be expressed as

$\displaystyle\frac{842}{1000}$.

Further, terminating decimals can be expressed as sum of fractions. For example, $0.842$ can be expressed as

$\frac{8}{10} + \frac{4}{100} + \frac{2}{1000}$.

Since rational numbers is closed under addition, the sum of any number of fractions is also a fraction. This shows that all terminating decimals are fractions.

Now, for non-terminating decimals, a certain strategy is needed to show that it is a rational number. The strategy is to multiply the decimal to powers of $10$ and subtract them so that the repeating decimals are eliminated. For example, to show that $0.7345345 \cdots$ (with $345$ repeating indefinitely) is rational, we let $x = 0.7345345 \cdots$.

Now, $10x = 7.345345 \cdots$ and $10000x = 7345.345 \cdots$.

Now, subtracting both sides of the equations, we have

$10000x - 10x = 7345.345 \cdots - 7.345 \cdots$

which results to

$9990x = 7338$.

Now, $x =\displaystyle\frac{7338}{9990}$ which is a fraction. Therefore,

$0.7345345 = \frac{7338}{9990}$

is rational.

You may also want to read more examples of converting non-terminating, repeating decimals in Irrational Numbers as Decimals.

## 3 comments on “Why are Non-terminating, Repeating Decimals Rational”

1. Pingback: Month in Review - August 2012

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>