The Pythagorean Theorem states that if a right triangle has side lengths and , where is the hypotenuse, then the sum of the squares of the two shorter lengths is equal to the square of the length of its hypotenuse.

Putting it in equation form, we have:

.

For example, if a right triangle has side lengths and , then the length of its hypotenuse is , since .

*Exercise 1: **What is the hypotenuse of the triangle with sides* *and* ?

The converse of the theorem is also true. If the side lengths of the triangle satisfy the equation , then the triangle is right. For instance, a triangle with side lengths satisfies the equation , therefore, the said triangle is right.

Geometrically, the Pythagorean theorem states that in a right triangle with sides and where is the hypotenuse, three squares are constructed containing the sides of the triangle as shown in Figure 2, the area of the two smaller squares when added equals the area of the largest square (click here to see animation).

One specific case is shown in Figure 3: the areas of the two smaller squares are and square units, and the area of the largest square is square units.

*Exercise 2: **Verify that the area of the largest square in Figure 3 is 25 square units.*

Similarly, triangles with side lengths and are right triangles. If the side lengths of a right triangle are all integers, we call them *Pythagorean triple*. Hence, and are Pythagorean triples.

*Exercise 3: Give other examples of Pythagorean triples*.

*Exercise 4: Prove that there are infinitely many Pythagorean triples.*

**Proofs of the Pythagorean Theorem**

There are more than 300 proofs of the Pythagorean theorem. More than 70 proofs shown in Cut-The-Knot website. Shown below are two of the proofs. Note that in proving the Pythagorean theorem, we want to show that for any right triangle with hypotenuse , and sides , and , the following relationship holds: .

*Geometric Proof*

First, we draw a triangle with side lengths and as shown in Figure 1. Next, create 4 triangles identical to it and using the triangles form a square with side lengths as shown in Figure 4-A. Notice that the area of the white square in Figure 4-A is .

Rearranging the triangles, we can also form another square with the same side length as shown in Figure 4-B.This means that the area of the white square in the Figure 4-A is equal to the sum of the areas of the white squares in Figure 4-B (Why?). That is, which is exactly what we want to show. *And since we can always form a (big) square using four right triangles with any dimension (in higher mathematics, we say that we can choose arbitrary and as side lengths of a right triangle), this implies that the equation stated above is always true.

*Exercise 5: Prove that the quadrilateral with side length C in Figure 4-A is a square.*

**Algebraic Proof**

In the second proof, we will now look at the yellow triangles instead of the squares. Consider Figure 4-A. We can compute the area of a square with side lengths using two methods: (1) we can square the side lengths and (2) we can add the area of the 4 congruent triangles and then add them to the area of the white square which is . If we let be the area of the square with side , then calculating we have

Method 1:

Method 2:

Methods 1 and 2 calculated the area of the same square, therefore they must be equal. This means that we can equate both expressions. Equating we have,

which is exactly what we want to show.

Pingback: Rational and Irrational Numbers « Mathematics and Multimedia

Pingback: GeoGebra Tutorial 13 – How to use Latex in GeoGebra « Mathematics and Multimedia

Pingback: Pythagorean Theorem, Distance Formula, and Equation of a Circle « Mathematics and Multimedia

Pingback: Math and Multimedia Carnival Call for Blog Submissions « Mathematics and Multimedia

hey i need help with some homework. If a2=6 AND B2 +7 WAT IS C2? Can you explain it to me and please respond asap!

hello cutie. I am sorry, but I have a policy not to answer homework questions. This is because if I do that, others will follow, and I don’t have time to answer them all. I have one recommended site though that may help you in you homework. Click the link below to go there:

http://www.artofproblemsolving.com/Forum/index.php?

You can ask math questions there. Just register (its free), and you can ask that question in appropriate fora (forums).

can you help explain why proof 13 of pythagorean theorem is correct. I understand the triangles are similar but i don’t understand how it works.

@sam: could you please give me the link of this proof 13?

Pingback: Understanding Fermat’s Last Theorem « Mathematics and Multimedia

Pingback: Top Posts for January 2011 « Mathematics and Multimedia

May it be this http://www.cut-the-knot.org/pythagoras/#13

Pingback: Top Posts for February 2011 « Mathematics and Multimedia

Pingback: March 2011 Top Posts « Mathematics and Multimedia

Pingback: An elementary proof of the cosine law « Mathematics and Multimedia

Pingback: Math and Multimedia 2011 Quarter 1 Top Posts « Mathematics and Multimedia

Pingback: All-time Top 10 Mathematics Posts | Mathematics and Multimedia

Pingback: Generating Pythagorean Triples from Square Numbers | Mathematics and Multimedia

Pingback: The Infinitude of Pythagorean Triples | Mathematics and Multimedia

Pingback: Using Similarity to Prove the Pythagorean Theorem

Pingback: Mathematical Proofs Without Words: What are they?

Pingback: Mathematical Proofs Galore

Pingback: Irrational Lengths and The Root Spiral

Pingback: A Practical Demonstration of the Pythagorean Theorem

Pingback: The Mathematical Reason Why Manholes are Round

thank you.

I agree with Newton that geometric proofs are so much better and more concrete than algebraic proofs