Paper Folding: Extracting the cube root of a number
In the previous post on paper folding, we have learned how to use paper folding to extract the square root of a number on the number line. In this post, we are going to learn how to extract the cube root a number by paper folding. The steps in constructing the fold is very similar to extracting the square root.
Paper Folding Instructions
- Get a rectangular piece of paper and fold it in the middle, horizontally and vertically, and let the creases (see green segments in the applet) represent the coordinate axes.
- Let M denote (0,1) and let R denote (-r,0).
- Make a single fold that places M on y = -1 and R on x=r.
- The x-intercept of the fold is
.
[iframe http://mathandmultimedia.com/wp-content/uploads/2011/07/paperfoldcuberoot.html 565 432]
Exercise: Prove that if M on and
is on
, the intersection of the fold and the x-axis is at
.
The continuation and proof of this theorem can be found here.
For GeoGebra enthusiasts, you can download the GeoGebra file here.
Reference: My old notebook. Sorry, I don’t know to whom I should attribute the paper fold.