SSS Congruence Theorem and Its Proof

Many high textbooks consider the congruence theorems (SSS Congruence Theorem, SAS Congruence Theorem, ASA Congruence Theorem) as postulates. This is because their proofs are complicated for high school students.  However, let us note that strictly speaking, in Euclidean Geomtery (the Geometry that we learn in high school), there are only five postulates and no others. All of other postulates mentioned in textbooks aside from these five are really theorems without proofs.

In this post, we are going to prove the SSS Congruence Theorem. Recall that the theorem states that if three corresponding sides of a triangle are congruent, then the two triangles are congruent.

Before proving the SSS Congruence theorem, we need to understand several concepts that are pre-requisite to its proof. These concepts are isometries particulary reflection and translation, properties of kites, and the transitive property of congruence. If you are familiar with these concepts, you can skip them and go directly to the proof. » Read more