The Curve Sketching Series

This series discusses the strategies on graphing different functions particularly linear, quadratic, and rational functions.

Curve Sketching 1 is a discussion of the four strategies in graphing linear functions. This includes two points, slope and intercept, translation, and x and y intercepts.

Curve Sketching 2 is a discussion about sketching the graph of quadratic functions. To be able to graph this function you need its critical points such as maximum or minimum, x intercepts, and y-intercept. It is also important to know where the graph opens and the axis of symmetry.

Curve Sketching 3 is a discussion about the vertical and horizontal asymptotes of rational functions. The vertical asymptote of a function is what makes f(x) = n/0 and the horizontal asymptote is the quotient of the leading terms if they have the same power.


Curve Sketching 4 is a discussion about the oblique asymptote of rational functions. An oblique asymptote exists if the degree of the numerator is 1 more than the degree of the denominator.

Curve Sketching 3: Understanding Vertical and Horizontal Asymptotes

This is the third part  of the Mathematics and Multimedia Curve Sketching Series. In the first part of this series, we have learned how to sketch linear functions, while in the second part, we have learned how to sketch quadratic functions.  In this post and the next post, we will discuss about another important property of some functions that can be used in curve sketching.


In Curve Sketching 2, we have learned the different properties of quadratic functions that can help in sketching its graphs.  This property is called the asymptote. » Read more