Limit by epsilon-delta proof: Example 2

This is the overdelayed continuation of the discussion on the \epsilon-\delta definition of limits. In this post, we discuss another example.

Prove that the \lim_{x \to 2} x^2 = 4.

Recall that the definition states that the limit of f(x) = L as x approaches a if for all \epsilon > 0, however small, there exists a \delta > 0 such that if 0 < |x - a| < \delta, then |f(x) - L| < \epsilon.

From the example 1, we have learned that we should manipulate |f(x)-L=|x^2 - 4|, to make one of the expressions look like |x-a|=|x-2|. Solving,  we have

|f(x) - L| = |x^2 - 4| = |(x+2)(x-2)| = |x+2||x-2|.

Note that we have accomplished our goal, going back to the definition, this means that if 0 < x - 2 < \delta, then |x+2||x-2| < \epsilon.

Now, it is not possible to divide both sides by x + 2 (making it |x-2| < \frac{\epsilon}{|x+2|}) because x varies. This means that we have to find a constant k such that |x + 2| < k. » Read more

More examples of proof by contradiction

We have had good discussions on mathematical proofs, so I am planning to create a mathematical proof series that will discuss the basics such as direct proof, indirect proof, and proof by mathematical induction.  But before I do that, let me continue with more examples of proof by contradiction.

Proof by contradiction, as we have discussed, is a proof strategy where you assume the opposite of a statement, and then find a contradiction somewhere in your proof. Finding a contradiction means that your assumption is false and therefore the statement is true. Below are several more examples of this proof strategy.

Example 1:  \sqrt{2} irrational.

Example 2: \sqrt{6} is irrational. The proof of this is basically the same as example 1, so it is left as an exercise.

Example 3: Proof that there are infinitely many primes.

Example 4: Knights and Liars

Example 5: \sqrt{2} + \sqrt{3} is irrational. » Read more

Simon’s Favorite Factoring Trick

Hmmm... I didn't know Simon was that good in math.

When I was quite younger, one of my hobbies was joining internet forums (fora?) on problem solving. I was not really good at it, so my role was only to ask questions. One of the internet forums I joined was the Art of Problem Solving math forum.

Art of Problem Solving (AOPS) is a community of problem solvers dedicated for math competitions – probably the best place on the web to ask hard (and very hard)  math questions. One of the tricks I learned there was Simon’s Favorite Factoring Trick (SFFT), a factorization technique popularized by one AOPS member. The general strategy (see example 3)  of SFFT is to add a constant or variable to an expression to make it factorable. This strategy can also be named as “completing rectangle” in analogy with “completing the square.”  » Read more

1 5 6 7 8 9