Proof Tutorial 1: Introduction to Mathematical Proofs

Introduction

Routine problems in mathematics usually require one or many answers . If we are asked to find the smallest of the three consecutive integers whose sum is 18, then our answer would be 5. If we are asked to find the equation of a line passing through (2,3), we can have many answers.

Proofs, however, is different. It requires us to think more and to reason with valid arguments. It requires us to be explicit and logical. It requires us to convince our readers and most of all ourselves.

Unless a proof problem is already given, finding mathematical statements to prove requires us to see patterns, generalize, and make conjectures about them. The problem stated above about consecutive integers does not require us to reason much or generalize at all.

The success of proof writing requires intuition, mathematical maturity, and experience. Contrary to mathematical proofs written in books, the ideas behind arriving at a proof are not “cut and dried” and elegant.  Mathematicians do not reveal the process they go through, or the ideas behind their proofs. This is also a skill that mathematicians and persons who are good in mathematics possess: they are able to read proofs. The skills of reading proofs may be achieved by learning how to write them.

 

Proving in higher mathematics, on the other hand, requires formal training. For instance, we have to know how to use logical connectives like and, or, not, and must understand how conditional and biconditional connectives work. Basic set theory concepts are also important. Moreover, we also have to learn proof strategies like direct proof and proof by contradiction to name some.

For now, we will not be discussing these things . Most of the proofs in basic mathematics only require a little intuition and good reasoning.

In the tutorial below, I tried to recreate (amateurishly) the process on how mathematicians see patterns, arrive at a conjecture, and how they prove their conjectures.  Of course, in reality, problems mathematicians encounter are a lot harder. In fact, some of the hardest problems take hundreds of years to be solved. For example, no mathematician has proved the Fermat’s Last Theorem for more than 300 years, and the mathematician who proved it solved it for eight years.

The proof that we are about to do below is very elementary. For now, we will highlight the process and not the difficulty. The titles of the processes below are not necessarily in order.

Recognizing Patterns and Making Conjectures

Before mathematicians prove theorems, they usually first see patterns. This happens when they read books, solve problems, or prove other theorems. For example, what do we see when we add two even integers? Let’s add some: 2 + 8 = 10, – 24 + 6 = -18, and – 4 + – 8 = -12. We can easily see that if we add two even integers, then their sum is always even.

From here, we might be tempted to say that if we add two integers, then their sum would always be even.  In mathematics, this kind of statement or hypothesis is called a conjecture: an educated and reasonable guess based on patterns observed. Rewriting our guess, we have

Conjecture: The sum of two even integers is always even.

If we want to disprove a conjecture, we only need one counterexample — an example that can make the conjecture false. (Can you think of one?). Note that  we only need one counterexample to disprove a conjecture.  If we want to prove it, however, we might be tempted to pair a few more integers and say that “oh, their sum is even, so it must be true”. No matter how many integers we pair, if we can’t exhaust all the pairs, then it cannot be considered as a proof.  When we say the sum of two even integers above, we mean ALL even integers.  Of course, there is no way that we can list all pairs of even integers since there are infinitely many of them.

Generalizing Patterns

Since it is impossible to enumerate all pairs of even integers, we need a representation, algebraic expression in particular, that will represent any even integer. If we can find this expression, then all the even integers would be represented. This process is called generalizing.  Like what we have done above, we generalized by representing all members of the set by a single expression. In our case, the members of our set are all even integers.

 

From the definition, we know that all even integers are divisible by 2. That means that if m is an even integer, then, when we divide m by 2, we can find a quotient which is also an integer. For instance, since 18 is an integer, we are sure that there exists an integer such that 18 divided by 2 is equal to that integer.

In general, suppose that quotient of m/2 is q, then it follows that m/2 = q, for any even integer m. Multiplying both sides of the equation by 2, we have m = 2q. That means that if m is an even integer, then there exists an integer q such that m = 2q. Hence, we may represent any even integer m with 2q for some integer q*. Note that q here is a generalized number, which means that an even integer can also be represented by 2x, 2y, 2z or any variable with the condition that they are integers.

Connecting the ideas

Proving is making logical and relevant statements from definitions, facts, assumptions and other theorems to come to a desired conclusion. Before coming up with an elegant proof, mathematicians usually have scratch work, connecting their ideas to arrive at what they want to prove.

Scratch work

From the statement above, we have shown that any even integer m, there exists an integer q, such that m = 2q. That means, that if we can show that the sum of two even integers is in the form 2q (or that the sum is divisible by 2), then we can be sure that it is always an even integer.

Since we need two integers, we let m and n are the two integers that we will add. Since both of them are even integers, then we can represent them as 2q and 2r respectively for some integers q and r. Adding both of them, we have m + n = 2q + 2r = 2(q + r). Now, q + r is an integer since q is an integer and r is an integer from our definition above. This means that 2(q + r) isof the form 2x for some integer x. This means that m + n is of the form 2x for some integer x. Therefore, m + n is even.

Writing (elegantly) the final proof

Here, we write our proof in a shorter and more elegant way. Conjectures that are proven are called theorems. So let us write the proof of our first theorem.

Theorem 1: The sum of two even integers is always even.

Proof. Let m,  n be even integers.  Then m = 2q for some integer q and n = 2r for some integer r. Now, m + n = 2q + 2r = 2(q + r). Since q + r is an integer, clearly, 2(r + s) = m + n is divisible by 2. Therefore, the sum of two even integers is even.

Most proofs are written in a concise way, leaving some details for the reader to fill in. For example, the statement “Since q + r is an integer” did not really state the reason why this is so. This is stated in our scratch work, but not in the proof.

Going Further

If m is an even integer, then m – 1 and m + 1 are odd integers. Since m = 2r, then 2r – 1 and 2r + 1 are also odd integers. In our example below, we will use 2r + 1, to prove that the sum of two odd integers is always even. As an exercise, use 2r – 1 in your proof.

Theorem 2: The sum of two odd integers is always even.

Let p, q be odd integers. Then p = 2a + 1 and q = 2b + 1 for some integers a and b. Now, adding we have p + q = 2r + 1 + 2s + 1 = 2r + 2s + 2 = 2(r + s + 1). Since r + s + 1 is an integer, then 2(r + s + 1) is divisible by 2. Hence, p + q is divisible by 2. Therefore, the sum of two odd integers is even.

Math and Hardwork

Being good in math requires hard work. Andrew Wiles worked on the Fermat’s Last Theorem for seven years, have given up several times thinking that it was impossible. In 1995, he finally thought he had proved it, and presented it in a conference.  A month later, his reviewer thought that there is a part of the proof which was vague (or wrong), so he had to review his work and found out that there was a part which was actually wrong.  He almost gave up. He worked more than a year to correct the error.

Now, he has carved his place in history.

*In technical language, the word “for some” is equivalent to the word “there exists”.

Exercises:

  1. Prove that the sum of an even number and an odd number is always odd.
  2. Prove that the difference of two odd integers is always even.
  3. Prove that the product of two even integers is always even.
  4. Prove that the product of two odd integers is always odd.
  5. Prove that the product of an even number and an odd number is always even.

The Exterior Angle Theorem

In the angle sum of a triangle post, we have discussed that the angle sum of a triangle is 180 degrees.  In the angle sum of a polygon post,  we also have discussed that  and that the angle sum of a polygon with n sides is 180(n-2). For example, a pentagon has 5 sides, so the sum of its interior angle is 180(5-2) = 180(3) = 540 degrees.

Figure 1 – The interior and exterior angles a triangle and a quadrilateral.

The angle sums that we have discussed in both blogs refer to the sum of the interior angles. What about the exterior angles?

The exterior angle is formed when we extend a side of a polygon. In the triangle above, \alpha is an exterior angle. The sum of the interior angle and the exterior angle adjacent to it is always 180  degrees (Why?).  Angles whose sum is 180 degrees are called supplementary angles.  If two angles are supplementary, we call them a linear pair.  For example, angles \alpha and a_1 are supplementary angles and at the same time a linear pair, so \alpha + a_1 = 180 degrees. Now this means, that \alpha = 180 - a_1. Therefore, if we want to compute the measure of an exterior angle adjacent to an interior angle, we can always subtract the measure of the interior angle from 180 as shown in Figure 1.

Observe the computation in the two diagrams.  If we let S_t be the angle sum of the exterior angles of a triangle, then S_t = (180 - a_1) + (180 - a_2) + (180 - a_3) = 540. Rearranging the terms, we have S_t = 540 - (a_1 + a_2 + a_3).  But a_1 + a_2 + a_3 is the sum of the interior angles of a triangle which is 180 degrees, so 540 - (a_1 + a_2 + a_3) = 540 - 180 = 360 degrees.

Now, try calculating for the sum of the exterior angles of the quadrilateral above. What is your answer?

To verify our hunch, we will try to compute for the sum of the exterior angles of a pentagon.

Let S_p be the sum of the exterior angles of the pentagon in Figure 2. Then

S_p =(180 - c_1)+ (180 - c_2) + (180 - c_3) +(180 - c_4) +(180 - c_5). Simplifying, we have S_p = 900 - (c_1 + c_2 + c_3 + c_4 + c_5). But according to the angle sum theorem for polygons, c_1 + c_2 + c_3 + c_4 + c_5 = 540. Therefore,900 - (c_1 + c_2 + c_3 + c_4 + c_5) = 900 - 540 = 360 degrees.

We have three polygons – triangle, quadrilateral, pentagon – whose angle sums of exterior angles are always 360 degrees. Now, is this true for all polygons?  Try to compute polygons up to 10 sides and see if the sum is 360 degrees.

Delving Deeper

We know that in a polygon, the number of exterior angles is equal to the number of interior angles.  Furthermore, we know that the angle sum of an interior angle and the exterior angle adjacent to each is always latex 180 degrees. If we have a polygon with 5 sides, then

interior angle sum + exterior angle sum = 180(5)

In general, this means that in a polygon with n sides

interior angle sum* + exterior angle sum = 180n

But the interior angle sum = 180(n – 2). So, substituting in the preceding equation, we have

180(n – 2) + exterior angle sum = 180n

which means that the exterior angle sum = 180n – 180(n – 2)  = 360 degrees. More formal proofs using these arguments are shown below.

Theorem: The sum of the measure of the exterior angles of a polygon with n sides is 360 degrees.

Proof 1:

Let a_1, a_2, \cdots a_n be measures of the interior angles of a polygon with n sides. Letb_1, b_2, \cdots b_n be measures of the exterior angles of the same polygon where all angle names with the same subscripts are adjacent angles from a_1 andb_1 all the way up through a_n and b_n .  We know that adjacent interior and exterior angles are supplementary angles, so this implies that their measures add up to 180 degrees. Hence,

(a1 + b1) + (a2 + b2) + … + (an + bn) = 180 + 180 + … +180 (n of them) = 180n

Regrouping the terms of the preceding equation, we have

(a1 + a2 + … + an) + (b1 + b2 + … + bn) = 180n

But the sum of the interior angles is a1 + a2 + … + an = 180(n – 2)

So,

180(n – 2) + (b1 + b2 + … + bn) = 180n

b1 + b2 + … + bn = 180n – 180(n – 2) = 360

Therefore, the sum of the exterior angles of any polygon is equal to 360 degrees.

Proof 2:

Let a1, a2, …, an be measures of the interior angles of the polygon with n sides. Since each adjacent interior and exterior angle is a linear pair, it follows that the measure of the exterior angles adjacent to them respectively are  180 – a1, 180 – a2, …, 180 – an.

If we let S, be the sum of the measure of the exterior angles, we have

S = (180 – a1) + (180 – a2) + (180 – a3) + … + (180 – an)

= (180 + 180 + 180 + … +180 (n of them)) – a – a2 – a3– … – an

S = 180n – (a1 + a2 + a3 + … + an)

But a1 + a2 + a3 + … + an is the sum of the measures of the interior angles of a polygon  with n sides which equals

180(n – 2), so, S = 180n – 180(n – 2) = 360, which is want we want to show.

Therefore, the sum of the exterior angles of any polygon is equal to 360 degrees.

An Intuitive Introduction to Limits

Limits is one of the most fundamental concepts of calculus. The foundation of calculus was not entirely solid during the time of Leibniz and Newton, but later developments on the concept, particularly the \epsilon-\delta definition by Cauchy, Weierstrass and other mathematicians established its firm foundation. In the discussion below, I shall introduce the concept of limits intuitively as it appears in common problems. For a more rigorous discussion, you can read the post article titled “An extensive explanation about the \epsilon-\delta definition of limits”.

Circumference and Limits

If we are going to approximate the circumference of a circle using the perimeter of an inscribed polygon, even without computation, we can observe that as the number of sides of the polygon increases, the better the approximation. In fact, we can make the perimeter of the polygon as close as we please to the circumference of the circle by choosing a sufficiently large number of sides.  Notice that no matter how large the number of sides our polygon has, its perimeter will never exceed or equal the circumference of the circle.

Introduction to Limits

Figure 1 – As the number of side of the polygons increases, its perimeter gets closer to the circumference of the circle.

 

In a more technical term, we say that the limit of the perimeter of the inscribed polygon as the number of its sides increases without bound (or as the number of sides of the inscribed polygon approaches infinity) is equal to the circumference of the circle.  In symbol, if we let n be the number of sides of the inscribed polygon, P_n be the perimeter of a polygon with n sides, and C be the circumference of the circle, we can say that the limit of P_n as n \to \infty is equal to C. Compactly, we can write \lim_{n \to \infty} P_n = C.

Functions and Limits

Consider the function f(x) = \frac{1}{x} where x is a natural number. Calculating the values of the function using the first 20 natural numbers and plotting the points in the xy-plane, we arrive at the table and the graph in Figure 2.

Introduction to Limits

Figure 2 – As x increases, f(x) gets closer and closer to 0.

First, we see that as the value of x increases, the value of f(x) decreases and approaches 0. Furthermore, we can make the value of f(x) as close to 0 as we please by choosing a sufficiently large x. We also notice that no matter how large the value of x is, the value of f(x) will never reach 0.

Hence, we say that the limit of f(x) = \frac{1}{x} as the value of x increases without bound is equal to 0, or equivalently the limit of f(x) = \frac{1}{x} as x approaches infinity is equal to 0. In symbol, we write the limit of f(x) \to \infty as x \to 0 or more compactly the \lim_{x \to \infty} \frac{1}{x} = 0.

Tangent line and Limits

Recall that the slope of a line is its “rise” over its “run”. The formula of slope m of a line is m = \displaystyle\frac{y_2 - y_1}{x_2 - x_1}, given two points with coordinates (x_1,y_1) and (x_2,y_2).  One of the famous ancient problems in mathematics was the tangent problem, which is getting the slope of a line tangent to a function at a point.  In the Figure 3, line n is tangent to the function f at point P.

Figure 3 – Line n is tangent to the function f at point P.

If we are going to compute for the slope of the line tangent line, we have a big problem because we only have one point, and the slope formula requires two points.  To deal with this problem, we select a point Q on the graph of f, draw the secant line PQ and move Q along the graph of f towards P. Notice that as Q approaches P (shown as Q' and Q''), the secant line gets closer and closer to the tangent line. This is the same as saying that the slope the secant line is getting closer and closer to the slope of the tangent line. Similarly, we can say that as the distance between the x-coordinates of P and Q is getting closer and closer to 0, the slope of the secant line is getting closer and closer to the slope of the tangent line.

Figure 4 – As point Q approaches P, the slope of the secant line is getting closer and closer to the slope of the tangent line.

If we let h be the distance between the x-coordinates of P and Q, m_s be the slope of the secant line PQ and m_t be the slope of the tangent line, we can say that the limit of the slope of secant line as h approaches 0 is equal to the slope of the tangent line. Concisely, we can write \lim_{h \to 0}m_s = m_t.

Area and Limits

Another ancient problem is about finding the area under a curve as shown in the leftmost graph in Figure 5. During the ancient time, finding the area of a curved plane was impossible.

 

Introduction to Limits

Figure 5 – As the number of rectangles increases, the sum of the area of the rectangles is getting closer and closer to the area of the bounded plane under the curve.

We can approximate the area above in the first graph in Figure 5 by constructing rectangles under the curve such that one of the corners of the rectangle touches the graph as shown in the second and third graph in Figure 5. We can see that as we increase the number of rectangles, the better is our approximation of the area under the curve. We can also see that no matter how large the number of rectangles is, the sum its areas will never exceed (or equal) the area of the plane under the curve. Hence, we say that as the number of rectangles increases without bound, the sum of the areas of the rectangles is equal to the area under the curve; or the limit of the sum of the areas of the rectangles as the number of rectangles approaches infinity is equal to the area of the plane under the curve.

If we let A be the area under the curve, S_n be the sum of the areas of n rectangles, then we can say that the limit of S_n as n approaches infinity is equal to A. Concisely, we can write \lim_{n \to\infty} S_n = A.

Numbers and Limits

We end with a more familiar example usually found in books. What if we want to find the limit of 2x + 1 as x approaches 3?

To answer the question, we must find the value 2x + 1 where x is very close to 3. Those values would be numbers that are very close to 3 – some slightly greater than 3 and some slightly less than 3. Place the  values in a table we have

Figure 6 – As x approaches 3, 2x + 1 approaches 7.

From the table, we can clearly see that as the value of x approaches 3, the value of 2x + 1 approaches 7.  Concisely, we can write the \lim_{x \to 3} 2x + 1 =7.

Mr. Jayson Dyer, author of The Number Warrior has another excellent explanation on the concept of limits in his blog Five intuitive approaches to teaching the infinitely small.

******

The area under the curve problem and the tangent problem are the ancient problems which gave birth to calculus. Calculus was independently invented by Gottfried Leibniz and Isaac Newton in the 17th century.

 

 

1 149 150 151 152 153 157